
Written by:
Oleksandr Zarichnyi

Conquer the 5 Most
Common Magento Coding
Issues to Optimize Your Site
for Performance

Table of Contents

INTRODUCTION...

TOP 5 ISSUES..

LOOPS..

 Calculating the size of an array on each iteration of a loop...

 SQL Queries Inside a Loop...

MODELS...

 Loading the Same Model Multiple Times...

COLLECTIONS ..

 Redundant Data Set Utilization..

	 Inefficient	Memory	Utilization..

CONCLUSIONS..

REFERENCES..

3

4

6

7

9

11

12

13

14

15

17

19

Copyright © 2013 Magento, Inc. All rights reserved

3

Introduction
In	any	eCommerce	implementation,	system	performance	can	mean	the	difference	between	satisfied	
customers	and	frustrated	customers	who	shop	elsewhere.	In	particular,	PHP	code	performance	issues	
can have immediate critical impact to the business. Although this type of issue is much easier to spot and
fix	using	static	code	analysis	than	performance	or	scalability	issues	related	to	software	design,	the	exact	
level	of	impact	cannot	be	measured	accurately	without	application	profiling	and	monitoring,	because	
these	methods	provide	information	on	how	often	the	code	is	executed	and	on	what	amounts	of	data.

This	article	provides	a	high-level	overview	of	the	most	common	issues	that	can	impact	performance	
and	scalability	of	the	Magento	PHP	code.	These	issues	are	created	by	Magento	PHP	developers	during	
software	implementation	and	do	not	relate	to	hardware,	application	or	database	design,	or	data	access	
SQL code.

Developers	who	are	new	to	Magento	can	use	this	article	as	a	guideline	on	how	to	write	optimized	PHP	
code.	This	article	can	also	serve	as	a	checklist	of	reminders	for	experienced	Magento	developers.

4

Top 5 Issues

Copyright © 2013 Magento, Inc. All rights reserved

5Top 5 Issues

Top 5 Issues
The	Magento	Expert	Consulting	Group	(ECG)	has	conducted	dozens	of	code	audits	of	client	codebases	
and	mined	about	300	common	coding	issues	made	by	PHP	developers.	About	28%	of	all	issues	affect	
performance	and	scalability	of	the	code.	The	top	5	performance	coding	issues	represent	84%	of	all	
performance	issues.	They	were	encountered	in	96%	of	client	codebases.	In	this	article,	ECG	presents	
detailed	descriptions	of	the	top	5	Magento	PHP	code	performance	issues	along	with	the	examples	of	
code	and	recommendations	on	how	to	avoid	them.

Most	of	the	issues	are	related	to	inefficient	operations,	redundant	or	useless	computations,	and	memory	
misuse. The top 5 are:

• Calculating the size of an array on each iteration of a loop

• SQL queries inside a loop

• Loading the same model multiple times

• Redundant data set utilization

•	 Inefficient	memory	utilization

10%	Calculating	the	size	of	an	array	
on each iteration of a loop

44%	SQL	queries	inside	a	loop

25%	Loading	the	same	model
multiple times

14%	Redundant	dataset	utilization

7%	Inefficient	memory	utilization

6

Loops

Copyright © 2013 Magento, Inc. All rights reserved

7

Loops
Even	the	slightest	coding	inefficiency	is	magnified	when	that	code	is	located	inside	a	loop.	Expensive	
operations,	such	as	SQL	queries	and	redundant	computations	within	loops,	are	a	common	culprit	of	
performance bottlenecks in Magento code.

CALCULATING THE SIZE OF AN ARRAY ON EACH ITERATION OF A LOOP

A	classic	example	of	inefficiency	is	calling	a	count() function inside the condition part of a for statement:

Although count()	is	fairly	fast	in	regular	use,	this	changes	rapidly	when	it	is	used	in	a	loop.	If	the	array	
or	collection	$rows	contains	a	lot	of	data,	this	code	is	slowed	down	significantly.	Because	the	PHP	
interpreter	doesn’t	perform	loop-invariant	code	motion	automatically,	a	much	better	way	is	to	move	the	
count() call outside the loop:

Loops

for ($i = 0; $i < count($rows); $i++) {
 //some code
}

$rowNum = count($rows);
for ($i = 0; $i < $rowNum; $i++) {
 //some code
}

Copyright © 2013 Magento, Inc. All rights reserved

8

The	test	was	conducted	with	an	array	of	Magento	products	and	was	run	on	a	dedicated	server	with	12	
GB	RAM,	16x	Intel®	Xeon®	CPU	running	at	2.40GHz,	and	PHP	5.3.19.

In	this	test,	in	cases	where	the	array	size	is	less	than	25,000	items,	moving	count() outside a loop can be
considered	as	a	micro-optimization,	but	as	the	array	size	grows	further	it	is	clear	that	running	count()
inside	of	the	loop	is	slower;	it	takes	twice	as	long	or	more	as	running	it	outside.

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

10 5000 10000 15000 20000 25000

Number of ITEMS

30000 35000 40000 45000

1.9

2.0

2.1

2.2

0.01955

0.01955

0.000388 0.00188

0.143084

0.611815

1.033278

2.118412

0.220481

0.470045

0.599042

1.085184

1.620352

1.888508

0.85866

0.672812

0.554234

0.38557

Count in a loop Count outside a loop

The	following	chart	illustrates	how	the	time	of	code	execution	varies	with	the	number	of	array	items	in	
both	cases,	when	the	count() call is made in a loop and outside it:

Loops

Copyright © 2013 Magento, Inc. All rights reserved

9

SQL Queries Inside a Loop
Execution	of	an	SQL	query	is	one	of	the	most	computationally	expensive	operations.	Running	an	SQL	
query	in	a	loop	will	most	probably	result	in	a	performance	bottleneck.

Very	often	developers	load	Magento	models	in	a	loop.	For	example,	they	iterate	over	the	array	of	
product IDs to load a product model and process it in the loop:

Loading	an	entity	attribute	value	(EAV)	model	requires	several	heavy	queries	to	execute.	As	the	number	
of	executed	queries	is	multiplied	with	the	number	of	products,	we	get	extremely	inefficient	and	slow	
code.

Instead of loading products in a loop, a Magento data collection can help to load a set of models in a very
efficient	manner.	The	following	example	filters	the	result	set	of	a	collection	by	an	array	of	product	IDs	
and	adds	all	requested	product	fields	to	result:

foreach ($this->getProductIds() as $productId) {
 $product = Mage::getModel(‘catalog/product’)->load($productId);
 $this->processProduct($product);
}

$collection = Mage::getResourceModel(‘catalog/product_collection’)
 ->addFieldToFilter(‘entity_id’, array($this->getProductIds()))
 ->addAttributeToSelect(array(‘name’));

foreach ($collection as $product) {
 $this->processProduct($product);
}

Loops

Copyright © 2013 Magento, Inc. All rights reserved

10

To	measure	the	performance	impact,	this	test	was	run	on	the	same	environment	as	the	previous	one.	
The results are even more striking:

Loading Model in Loop Using Collection

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

10 100 200 300 400 500

Number of Products
600 700 800 900 1000

0.051789 0.094573 0.153062 0.232249 0.300719 0.360511 0.417279 0.530623 0.650479
0.8126080.745131

1.440549

2.211268

3.006016

3.902571

4.604037

5.134246

5.862782

6.5894

7.737113

0.037292

The	code	that	uses	collection	is	linearly	faster	than	the	code	that	loads	models	in	a	loop.	The	difference	is	
significant	from	the	very	beginning.

Of	course,	when	dealing	with	large	data	sets	with	the	help	of	collections,	you	should	pay	attention	to	the	
amount	of	loaded	data	so	that	it	doesn’t	exceed	the	amount	of	the	allocated	memory.

Models	are	often	loaded	merely	to	retrieve	one	or	several	entity	attributes.	An	important	benefit	of	
Magento	data	collection	is	that	it	provides	control	over	the	loaded	data	fields,	while	loading	an	EAV	
model	will	request	multiple	tables	and	select	all	the	attributes	of	the	entity.

Model	saving	and	deletion	operations	are	also	expensive.	If	the	performance	is	critical,	execute	a	mass	
save/delete query, rather than running them in a loop.

Loops

11

Models

Copyright © 2013 Magento, Inc. All rights reserved

12

Models
LOADING THE SAME MODEL MULTIPLE TIMES

Developers sometimes do not consider that model load operation is not internally cached, and each time
the load() method is called, one or more queries are ran against the database. Loading the same model
several	times	causes	noticeable	performance	degradation.	For	example:

Each	model	should	be	loaded	only	once	(if	there	is	a	reason	to	load	it	at	all)	to	optimize	performance:

Another point to consider is that sometimes it is not even necessary to load the model because you don’t
need	to	work	with	model	entity	itself.	The	following	code	loads	a	product	merely	to	get	the	product	ID:

In this case you can use the native product method getIdBySku()	that	will	work	much	faster:

Models

$name = Mage::getModel(‘catalog/product’)->load($productId)->getName();
$sku = Mage::getModel(‘catalog/product’)->load($productId)->getSku();
$attr = Mage::getModel(‘catalog/product’)->load($productId)->getAttr();

$product = Mage::getModel(‘catalog/product’)->loadByAttribute(‘sku’, $sku);
$res[‘id’] = $product->getId();

$res[‘id’] = Mage::getModel(‘catalog/product’)->getIdBySku($sku);

$product = Mage::getModel(‘catalog/product’)->load($productId);
$name = $product->getName();
$sku = $product->getSku();
$attr = $product->getAttr();

13

Collections

Copyright © 2013 Magento, Inc. All rights reserved

14

Collections
Magento	collections	provide	a	large	set	of	operations	to	work	with	a	set	of	models.	They	are	quite	
optimized	and	efficient,	but	there	are	a	few	things	to	keep	in	mind	when	working	with	collections.	
Processing	large	data	sets	requires	a	lot	of	system	and	network	resources,	so	it	is	extremely	important	
to	restrict	the	results	by	applying	proper	filters	and	limits,	to	avoid	fetching	and	processing	more	data	
than necessary.

Developers	often	misuse	collections;	the	two	most	common	issues	are	redundant	data	set	utilization	and	
inefficient	memory	utilization.

REDUNDANT DATA SET UTILIZATION

Collections are often used to retrieve only one item by calling the $collection->getFirstItem() method
or	returning	the	first	item	on	the	first	iteration	of	the	loop.	A	common	mistake	of	inexperienced	Magento	
developers is not applying a limitation on the collection’s query results.

It may be not obvious that the $collection->getFirstItem() method does not modify the collection’s
query results and restrict the result to one item itself. Therefore, if no restrictions are applied before it is
called,	it	will	load	all	the	items	of	the	collection	as	follows:

Always	remember	to	apply	the	limitation	in	the	case	where	the	result	of	the	query	is	a	set	of	more	than	
one item, in order to improve code performance and scalability:

Collections

public function getRandomItem() {
 $collection = Mage::getResourceModel(‘mymodule/my_collection’)-
>setRandomOrder();
 return $collection->getFirstItem();
}

public function getRandomItem() {
 $collection = Mage::getResourceModel(‘mymodule/my_collection’)-
>setRandomOrder()
 ->setPageSize(1);
 return $collection->getFirstItem();
}

Copyright © 2013 Magento, Inc. All rights reserved

15

Use the $collection->setPageSize() and $collection->setCurPage() methods to specify the limitation
and	offset,	respectively,	or	modify	the	collection	query	directly:

$collection->getSelect()->limit().

Sometimes	developers	want	to	retrieve	the	number	of	items	in	a	particular	collection,	without	further	
processing of its items. It such cases most of them use $collection->count() or count($collection)
constructs,	which	appear	to	be	obvious	and	natural	solutions.	However,	it	is	most	definitely	the	wrong	
way,	because	all	the	items	of	the	collection	will	be	loaded	from	the	database	and	iterated.	It	is	much	
more	efficient	to	call	the	$collection->getSize() method instead.

INEFFICIENT MEMORY UTILIZATION

Using the database adapter method fetchAll()	to	fetch	large	result	sets	will	cause	a	heavy	demand	
on	system	and	possibly	network	resources.	Magento	developers	often	fetch	and	iterate	result	sets	as	
follows:

On	large	amounts	of	fetched	data,	this	code	will	execute	for	a	very	long	time	and	PHP	will	probably	run	
out of memory.

In	the	following	example,	each	database	row	is	fetched	separately	using	the	fetch() method to reduce
resource consumption:

$rowSet = $this->_getReadAdapter()->fetchAll($select);
foreach ($rowSet as $row) {
 //process row
}

$query = $this->_getReadAdapter()->query($select);
while ($row = $query->fetch()) {
 //process row
}

Collections

Copyright © 2013 Magento, Inc. All rights reserved

16

The	database	server	will	execute	only	one	query	and	the	database	buffer	will	be	used	for	retrieving	
records one by one.

Also,	rather	than	retrieving	all	of	the	data	and	manipulating	it	in	PHP,	using	the	database	server	to	
manipulate	the	result	sets	should	be	considered.	For	example,	it	may	be	more	efficient	to	use	WHERE	
clauses	in	SQL	to	restrict	results	before	retrieving	and	processing	them	with	PHP.

As a general rule, to enable best code performance and scalability, developers should avoid situations
when	a	large	data	set	is	loaded	into	memory	before	it	can	be	processed.	For	example,	when	dealing	with	
massive	XML	documents,		the	XMLReader	PHP	library	is	recommended	rather	than	SimpleXML	because	
it	works	with	the	document	stream	and	doesn’t	read	the	entire	data	set	into	memory.

Collections

17

Conclusions

Copyright © 2013 Magento, Inc. All rights reserved

18

Conclusions
Although	some	of	the	described	issues	relate	to	the	specifics	of	Magento	model	and	collection	features,	
others	are	common	for	PHP	and	even	other	technologies.	One	thing	Magento	PHP	developers	should	
keep	in	mind:	Always	be	attentive	to	performance-critical	code,	avoid	useless	computations	inside	loops,	
try	to	learn	and	understand	the	features	of	the	framework,	and	use	them	correctly.	Do	not	forget	about	
updating	your	PHP	version;	fortunately,	it’s	getting	better	and	faster	each	new	release.

If	you’re	dealing	with	small	data	volumes	you	may	not	care	too	much	about	code	optimization.	Use	
common	sense—sometimes	it	is	acceptable	to	fetch	all	data	or	process	it	in	a	loop,	but	always	think	
ahead	and	consider	how	your	code	will	perform	and	scale	in	the	future.

Conclusions

Copyright © 2013 Magento, Inc. All rights reserved

19

References
PHP	performance	tips	–	https://developers.google.com/speed/articles/optimizing-php

Dov	Bulka	and	David	Mayhew,	Efficient C++ Performance Programming Techniques. Addison-Wesly, 1999.

Improving .NET Application Performance and Scalability. Chapter 5 — Improving Managed Code
Performance http://msdn.microsoft.com/en-us/library/ff647790.aspx

http://php.net/manual/en/function.count.php

http://php.net/manual/en/class.xmlreader.php

http://php.net/manual/en/pdostatement.fetchall.php

https://developers.google.com/speed/articles/optimizing-php
http://msdn.microsoft.com/en-us/library/ff647790.aspx
http://php.net/manual/en/function.count.php
http://php.net/manual/en/class.xmlreader.php
http://php.net/manual/en/pdostatement.fetchall.php

