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Introduction 
 

This Study Guide is intended to help you prepare for the Magento® Certified Developer Plus 
Exam. For each content area of the exam, the Study Guide details the objectives (skills) that 
are tested by the exam. For each objective, it provides questions that you should ask yourself 
as you study the Magento code base, along with code references that you can use as entry 
points to find answers to those questions. 

This Study Guide is continually being revised and improved. When preparing for the exam, 
remember to check the website for the latest version of this Study Guide. 
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1- Basics 

This topic comprises approximately 5% of the Standard form of the exam. Questions are 
drawn randomly from the following topics and objectives: 

High-level Magento architecture 

○ Describe Magento codepools 

○ Describe typical Magento module structure 

○ Describe Magento templates and layout files location 

○ Describe Magento skin and JavaScript files location 

○ Identify and explain the main Magento design areas (adminhtml and frontend) 

○ Explain class naming conventions and their relationship with the autoloader 

○ Describe methods for resolving module conflicts. 

To verify your understanding of these objectives, ask yourself the following 
questions: 

■ How does the framework interact with the various codepools? 
■ What constitutes a namespace and a module? 
■ What does the structure of a complete theme look like? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_App 
■ Mage_Core_Model_Config 
■ Varien_Autoload 

Magento configuration 

○ Explain how Magento loads and manipulates configuration information 

○ Describe class group configuration and use in factory methods  

○ Describe the process and configuration of class overrides in Magento 

○ Register an Observer 
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○ Identify the function and proper use of automatically available events, including 
*_load_after, etc. 

○ Set up a cron job 

Since Magento is an XML DOM configuration-based framework, a thorough 
understanding of how Magento loads and assembles its configuration XML DOM is a 
core competency. 

■ How does the framework discover active modules and their 
configuration? 

■ What are the common methods with which the framework accesses its 
configuration values and areas? 

■ How are per-store configuration values established in the XML DOM? 
■ By what process do the factory methods and autoloader enable class 

instantiation? 
■ Which class types have configured prefixes, and how does this relate to 

class overrides? 
■ Which class types and files have explicit paths? 
■ What configuration parameters are available for event observers? 
■ What are the interface and configuration options for automatically fired 

events? 
■ What is the structure of event observers, and how are properties 

accessed therein? 
■ What configuration parameters are available for cron jobs? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_App_Area  
■ Mage_Core_Model_Config 
■ Mage_Core_Model_Store 
■ Varien_Event_Observer 

Internationalization 

○ Describe how to plan for internationalization of a Magento site 

○ Describe the use of Magento translate classes and translate files 

○ Describe the advantages and disadvantages of using subdomains and subdirectories 
in internationalization 
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To verify your understanding of these objectives, ask yourself the following 
questions: 

■ Which method is used for translating strings, and on which types of 
objects is it generally available? 

■ In what way does the developer mode influence how Magento handles 
translations? 

■ How many options exist to add a custom translation for any given 
string? 

■ What is the priority of translation options? 
■ How are translation conflicts (when two modules translate the same 

string) processed by Magento? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_Translate::init() 
■ Mage_Core_Model_Locale::emulate() 
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2- Request Flow 

This topic comprises approximately 6% of the exam. Questions are drawn randomly from the 
following topics and objectives: 

Application initialization 

○ Describe the steps for application initialization 

○ Describe the role of the system entrypoint, index.php 

Starting with the index.php, including Mage.php, follow through the steps 
Magento takes to set up the run time environment. 

■ How and when is the include path set up and the auto loader registered? 
■ How and when does Magento load the base configuration, the module 

configuration, and the database configuration? 
■ How and when are the two main types of setup script executed? 
■ When does Magento decide which store view to use, and when is the 

current locale set? 
■ Which ways exist in Magento to specify the current store view? 
■ When are the request and response objects initialized? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ index.php 
■ Mage_Core_Model_App::run() 
■ Mage_Core_Model_Config::loadBase() and init() 

Front Controller 

○ Describe the role of the front controller 

○ Identify uses for events fired in the front controller 

Follow the flow of control through front controller initialization until an action 
controller is dispatched. 

■ Which ways exist in Magento to add router classes? 
■ What are the differences between the various ways to add routers? 
■ Think of possible uses for each of the events fired in the front controller 
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These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Controller_Varien_Front::init() and 
dispatch() 

URL rewrites 

○ Describe URL structure/processing in Magento 

○ Describe the URL rewrite process 

Focus on the internals of database-based URL rewrites: 

■ What is the purpose of each of the fields in the core_url_rewrite 
table? 

■ When does Magento created the rewrite records for categories and 
products? 

■ How and where does Magento find a matching record for the current 
request? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Controller_Varien_Front::dispatch() 
■ Mage_Core_Model_Url_Rewrite::rewrite() 

Request routing 

○ Describe request routing/request flow in Magento 

○ Describe how Magento determines which controller to use and how to customize 
route-to-controller resolution 

Starting with the front controller delegating the process of mapping a request to a 
controller action, study the steps that occur until a controller action is dispatched. 

■ Which routers exist in a native Magento implementation? 
■ How does the standard router map a request to a controller class? 
■ How does the standard router build the filesystem path to a file that 

might contain a matching action controller? 
■ How does Magento process requests that cannot be mapped? 
■ After a matching action controller is found, what steps occur before the 

action method is executed? 
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These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Controller_Varien_Front::init() 
■ Mage_Core_Controller_Varien_Router_Standard::coll

ectRoutes() and match() 

Module initialization 

○ Describe the steps needed to create and register a new module 

○ Describe the effect of module dependencies 

○ Describe different types of configuration files and the priorities of their loading 

This objective covers how Magento loads modules and how modules interact with 
each other: 

■ What does "Magento loads modules" mean? 
■ In which order are Magento modules loaded? 
■ Which core class loads modules? 
■ What are the consequences of one module depending on another 

module? 
■ During the initialization of Magento, when are modules loaded in? 
■ Why is the load order important? 
■ What is the difference regarding module loading between 

Mage::run() and Mage::app()? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage::run() and Mage::app() 
■ Mage_Core_Model_App::run() and init() 

Design and layout initialization 

○ Identify the steps in the request flow in which: 

– Design data is populated 

– Layout configuration files are parsed 

– Layout is compiled 

– Output is rendered 
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The design configuration is part of Magento's view implementation. This objective 
covers the processing of these XML instructions: 

■ Which ways exist to specify the layout update handles that will be 
processed during a request? 

■ Which classes are responsible for the layout being loaded? 
■ How are layout xml directives processed? 
■ Which configuration adds a file containing layout xml updates to a 

module? 
■ Why is the load order of layout xml files important? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Controller_Varien_Action::loadLayout() 
■ Mage_Core_Model_Layout::__construct() 
■ Mage_Core_Model_Layout_Update::load() 

Flushing data (output) 

○ Describe how and when Magento renders content to the browser 

○ Describe how and when Magento flushes output variables using the front controller 

This objective covers the response object as well as combining JavaScript and CSS 
files. 

■ Which events are associated with sending output? 
■ Which class is responsible for sending output? 
■ What are possible issues when this output is not sent to the browser 

using the typical output mechanism, but is instead sent to the browser 
directly?  

■ How are redirects handled? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Controller_Varien_Front::dispatch() 
■ Mage_Core_Controller_Response_Http and super 

classes 
■ Mage_Page_Block_Html_Head::getCssJsHtml() 
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3- Rendering 

This topic comprises approximately 6% of the exam. Questions are drawn randomly from the 
following topics and objectives: 

Themes in Magento 

○ Define and describe the use of themes in Magento: 

■ How you can use themes to customize core functionality? 
■ How can you implement different designs for different stores using 

Magento themes? 
■ In which two ways you can register custom theme? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_Layout 
■ Mage_Core_Model_Layout_Update 
■ Mage_Core_Model_Design 
■ Mage_Core_Model_Design_Package 

○ Define and describe the use of design packages: 

■ What is the difference between package and theme? 
■ What happens if the requested file is missed in your theme/package? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_Layout 
■ Mage_Core_Model_Layout_Update 
■ Mage_Core_Model_Design 
■ Mage_Core_Model_Design_Package 

Mage_Core_Block_Template 

○ Describe the process of defining template file paths: 

■ Which kind of paths (absolute or relative) does Magento use for 
templates and layout files? 

■ How exactly can Magento define which physical file correspond to 
certain template/layout to use? 

■ Which classes and methods need to be rewritten in order to add 
additional directories to the fallback list? 
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These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_Design 
■ Mage_Core_Model_Design_Package 
■ Mage_Core_Block_Template 

Blocks 

○ Describe the programmatic structure of blocks: 

■ What are blocks used for in Magento? 
■ What is the parent block for all Magento blocks? 
■ Which class does each block that uses a template extend? 
■ In which way does a template block store information about its 

template file? Does it store an absolute or a relative path to the 
template? 

■ What is the role of the Mage_Core_Block_Abstract class? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_Layout 
■ Mage_Core_Model_Layout_Update 
■ Mage_Core_Block_Template 
■ Mage_Core_Block_Abstract 
■ Mage_Adminhtml_Block_Abstract 

○ Describe the relationship between templates and blocks: 

■ Can any block in Magento use a template file? 
■ How does the $this variable work inside the template file? 
■ Is it possible to render a template without a block in Magento? 
■ Is it possible to have a block without a template in Magento? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Block_Template 
■ Mage_Core_Block_Abstract 

○ Describe the stages in the lifecycle of a block: 

■ Which class is responsible for creating an instance of the block? 
■ Which class is responsible for figuring out which blocks should be 

created for certain pages? 
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■ How is the tree of blocks typically rendered? 
■ Is it possible to create an instance of the block and render it on the page 

without using the Magento layout? 
■ Is it possible to create an instance of the block and add it to the current 

layout manually? 
■ How are a block’s children rendered? Once you added a child to the 

block, can you expect it will be rendered automatically?  
■ What is a difference in rendering process for different types of blocks? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_Layout 
■ Mage_Core_Model_Layout_Update 
■ Mage_Core_Block_Template 
■ Mage_Core_Block_Abstract 
■ Mage_Core_Block_Text 
■ Mage_Core_Block_Text_List 

○ Describe events fired in blocks: 

■ How can block output be caught using an observer? 
■ What events do Mage_Core_Block_Abstract and 

Mage_Core_Block_Template fire? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Block_Abstract 

○ Identify different types of blocks: 

■ What is the purpose of each of the following block types: 
− Mage_Core_Block_Template 
− Mage_Core_Block_Text_List 
− Mage_Core_Block_Text 

■ Which block type renders its children automatically? 
■ Which block type is usually used for a “content” block on Magento 

pages? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage/Core/Block/* 
■ Mage_Core_Block_Abstract 
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■ Mage_Core_Block_Template 
■ Mage_Core_Block_Text 
■ Mage_Core_Block_Text_List 
■ Mage_Page_Block_Html_Head 

○ Describe block instantiation: 

■ How can a template’s block instance be accessed inside the template 
file, and how can other block instances be accessed? 

■ How can block instances be accessed from the controller? 
■ How can block instances be accessed inside install scripts or other 

model class instances?  

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_Layout 
■ Mage_Core_Model_Layout_Update 
■ Mage_Core_Controller_Varien_Action 

○ Explain different mechanisms for disabling block output: 

■ In which ways can block output be disabled in Magento? 
■ Which method can be overridden to control block output?  

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_Layout 

○ Describe how a typical block is rendered: 

■ Which class performs rendering of the template? 
■ Which classes are responsible for figuring out the absolute path for 

including the template file? 
■ In which method are templates rendered? 
■ How can output buffering be enabled/disabled when templates are 

rendered? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_Layout 
■ Mage_Core_Model_Layout_Update 
■ Mage_Core_Block_Template 
■ Mage_Core_Block_Abstract 
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Design layout, XML schema, and CMS content directives 

○ Describe the elements of Magento's layout XML schema, including the major layout 
directives: 

■ How are <update />, <block />, and <action /> used in 
Magento layout? 

■ Which classes and methods determine which nodes from layout XML 
correspond to certain URLs? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_Layout 
■ Mage_Core_Model_Layout_Update 
■ Mage_Core_Block_Abstract 

○ Register layout XML files: 

■ How can layout XML files be registered for the frontend and adminhtml 
areas? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_Layout_Update 

○ Create and add code to pages: 

■ How can code be modified or added to Magento pages using the 
following methods? 
− Template customizations 
− Layout customizations 
− Overriding block classes 
− Registering observers on general block events 

■ In which circumstances are each of the above methods more or less 
appropriate than others?  

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Controller_Varien_Action 
■ Mage/Core/Block/* 
■ Mage_Core_Block_Abstract 
■ Mage_Core_Block_Template 
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■ Mage_Core_Block_Text 
■ Mage_Core_Block_Text_List 
■ Mage_Page_Block_Html_Head 

○ Explain how variables can be passed to block instances via layout XML: 

■ How can variables be passed to the block using the following methods? 
− From layout xml file 
− From controller 
− From one block to another 
− From an arbitrary location (for example, install/upgrade scripts, 

models) 
■ In which circumstances are each of the above methods more or less 

appropriate than others?  

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_Layout 
■ Mage_Core_Controller_Varien_Action 
■ Mage/Core/Block/* 
■ Mage_Core_Block_Abstract 
■ Mage_Core_Block_Template 
■ Mage_Core_Block_Text 
■ Mage_Core_Block_Text_List 
■ Mage_Page_Block_Html_Head 

○ Describe various ways to add and customize JavaScript to specific request scopes: 

■ Which block is responsible for rendering JavaScript in Magento? 
■ Which modes of including JavaScript does Magento support? 
■ Which classes and files should be checked if a link to a custom JavaScript 

file isn’t being rendered on a page?  

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage/Core/Block/* 
■ Mage_Core_Block_Abstract 
■ Mage_Core_Block_Template 
■ Mage_Core_Block_Text 
■ Mage_Core_Block_Text_List 
■ Mage_Page_Block_Html_Head 
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General References for this section: 

Mage_Core_Model_Layout 

Mage_Core_Model_Layout_Update 

Mage_Core_Model_Design 

Mage_Core_Model_Design_Package 

Mage_Core_Controller_Varien_Action 
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4- Working with Database in Magento 
This topic comprises approximately 11% of the exam. Questions are drawn randomly from the 
following topics and objectives: 

Models, resource models, and collections 

○ Describe the basic concepts of models, resource models, and collections, and the 
relationship they have to one another 

○ Configure a database connection 

○ Describe how Magento works with database tables 

○ Describe the load-and-save process for a regular entity 

○ Describe group save operations 

○ Describe the role of Zend_Db_Select in Magento 

○ Describe the collection interface (filtering/sorting/grouping) 

○ Describe the hierarchy of database-related classes in Magento 

○ Describe the role and hierarchy of setup objects in Magento 

These objectives fall into two broad areas. The first is about how models work with 
resource models and collections in order to access the database storage layer; the 
second is about how to work with the database directly by using the adapter classes 
and the Zend_Db_Select object to create queries. 

■ Which methods exist to access the table of a resource model? 
■ Which methods exist to create joins between tables on collections and 

on select instances? 
■ How does Magento support different RDBMSs? 
■ How do table name lookups work, and what is the purpose of making 

table names configurable? 
■ Which events are fired automatically during CRUD operations? 
■ How does Magento figure out if a save() call needs to create an 

INSERT or an UPDATE query? 
■ How many ways exist to specify filters on a flat table collection? 
■ Which methods exist to influence the ordering of the result set for flat 

table collections? How do the methods differ? 
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■ Why and how does Magento differentiate between setup, read, and 
write database resources? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_Abstract 
■ Mage_Core_Model_Resource_Db_Abstract 
■ Mage_Core_Model_Resource_Db_Collection_Abstract 
■ Mage_Core_Model_Resource::getTableName() 
■ Zend_Db_Select 

Install/upgrade scripts 

○ Describe the install/upgrade workflow 

○ Write install and upgrade scripts using set-up resources  

○ Identify how to use the DDL class in setup scripts 

Each module can encapsulate the preparation and upgrade of the database table it 
requires via setup scripts. 

■ Under which circumstances are setup scripts executed? 
■ What is the difference between the different classes used to execute 

setup scripts? 
■ Which is the base setup class for flat table entities, and which one the 

base for EAV entities? 
■ Which methods are generally available in setup scripts to manipulate 

database tables and indexes? 
■ What is the difference between addAttribute() and 

updateAttribute() in EAV setup scripts? 
■ How can you implement a rollback in Magento? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Core_Model_App::run() and _initModules() 
■ Mage_Core_Model_Resource_Setup::applyAllUpdates() 

and applyAllDataUpdates() 
■ Mage_Eav_Model_Entity_Setup::addAttribute() and 

updateAttribute() 
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5- Entity-Attribute-Value (EAV) Model 

This topic comprises approximately 8% of the exam. Questions are drawn randomly from the 
following topics and objectives:  

EAV model concepts 

○ Define basic EAV concepts and class hierarchy 

○ Describe the database schema for EAV entities 

○ Describe the EAV entity structure and its difference from the standard core resource 
model 

○ Describe the EAV load-and-save process and its differences from the regular load-
and-save process 

This objective covers understanding how EAV entity values are stored in the 
database, how the involved tables relate, how the EAV resource models differ from 
the flat table resource models and how the EAV models process CRUD operations. 

■ Which classes in Mage_Eav are used as resource models and which are 
used as regular models? 

■ How do flat and EAV resource models differ? 
■ Which entities in a native Magento installation use EAV resource models 

and why? 
■ What are the advantages and disadvantages of EAV over flat table 

resource models? 
■ How are store and website scope attribute values implemented in the 

Magneto EAV system? 
■ How does the model distinguish between insert and update operations? 
■ How do load and save processes for EAV entities differ from those for 

flat table entities? What parts are identical? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Eav_Model_Config 
■ Mage_Eav_Model_Entity_Abstract 
■ Mage_Eav_Model_Entity_Collection_Abstract 
■ Mage_Eav_Model_Entity_Abstract::load() and save() 
■ Mage_Core_Model_Abstract::load() and save() 
■ Mage_Eav_Model_Entity_Collection_Abstract::load() 
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■ Mage_Core_Model_Resource_Db_Collection_Abstract::
load() 

 Attributes management 

○ Identify the purpose of attribute frontend, source, and backend models 

○ Describe how to implement the interface of attribute frontend, source, and backend 
models: 

■ How do attribute models, attribute source models, attribute backend 
models and attribute frontend models relate to each other? 

■ Which methods have to be implemented in a custom source model (or 
frontend model or backend model)? 

■ Can adminhtml system configuration source models also be used for 
EAV attributes? 

■ What is the default frontend model (and source and backend model) for 
EAV attributes? 

■ Does every attribute use a source model? 
■ Which classes and methods are related to updating the EAV attribute 

values in the flat catalog tables? What factors allow for attributes to be 
added to flat catalog tables? 

■ How are store-scoped entity attribute values stored when catalog flat 
storage is enabled for that entity type? 

■ Which frontend, source, and backend models are available in a stock 
Magento installation? 

■ How do multi-lingual options for attributes work in Magento? 
■ How do you get a list of all options for an attribute for a specified store 

view in addition to the admin scope? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Eav_Model_Entity_Attribute_Abstract 
■ Mage_Eav_Model_Entity_Attribute_Backend_Abstrace  
■ Mage_Eav_Model_Entity_Attribute_Frontend_Abstract 
■ Mage_Eav_Model_Entity_Attribute_Source_Abstract 
■ Mage_Eav_Model_Entity_Attribute_Source_Table 
■ Mage_Eav_Model_Resource_Entity_Attribute_Option_C

ollection::load() 

○ Describe how to create and customize attributes. 

Besides simply using the stock EAV attributes that come with Magento, one of the 
most common operations for developers is to modify or create attributes. 
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■ Which setup methods are available to work with EAV entities? 
■ How can an EAV setup class be instantiated in a setup script if not 

specified in the XML <class> configuration for a setup resource? 
■ What is the difference between addAttribute() and 

updateAttribute()? 
■ What are the advantages of using a custom setup class for manipulating 

EAV attributes in a custom module? 

This code reference can be used as an entry point to find answers to the questions 
above: 

■ Mage_Eav_Model_Entity_Setup 
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6- Adminhtml 

This topic comprises approximately 6% of the exam. Items are drawn randomly from the 
following topics and objectives: 

Common structure/architecture 

○ Describe the similarities and differences between adminhtml and frontend interface 
and routing: 

■ Which areas in configuration are only loaded for the admin area? 
■ What is the difference between admin and frontend controllers? 
■ When does Magento figure out which area to use on the current page? 
■ How you can make your controller work under the /admin route? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Adminhtml_Controller_Action 
■ Mage_Core_Model_Layout 
■ Mage_Core_Model_Layout_Update 
■ Mage_Core_Controller_Varien_Router_Standard 

○ Describe the components and types of cache clearing using the adminhtml interface: 

■ At which moment does Magento check if a user is logged in or not? 
■ Which class do most Magento adminhtml blocks extend? 
■ What are the roles of adminhtml config? 
■ What are the differences between the different cache types on the 

admin cache cleaning page? 
■ What is the difference between “Flush storage” and “Flush Magento 

Cache”? 
■ How you can clear the cache without using the UI? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Adminhtml_Model_Config 
■ Mage_Adminhtml_Model_Config_Data 
■ Mage_Admin_Model_Observer 
■ Mage_Core_Model_Cache 
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Forms in Magento 

○ Define form structure, form templates, grids in Magento, and grid containers and 
elements: 

■ Which block does a standard Magento form extend? 
■ What is the default template for a Magento form? 
■ Describe the role of a form container and its template. 
■ Describe the concept of Form elements, and list system elements 

implemented in Magento. 
■ Describe the concept of Fieldsets. 
■ How can you render an element with a custom template? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ lib/Varien/Data/Form/* 
■ Mage_Adminhtml_Block_Widget_Form 
■ Mage_Adminhtml_Block_Widget_Form_Container 

Grids in Magento 

○ Create a simple form and grid for a custom entity 

○ Describe how to implement advanced Adminhtml Grids and Forms, including 
editable cells, mass actions, totals, reports, custom filters and renderers, multiple 
grids on one page, combining grids with forms, and adding custom JavaScript to an 
admin form: 

■ Which block class do Magento grid classes typically extend? 
■ What is the default template for Magento grid instances? 
■ How can grid filters be customized? 
■ How does Magento actually perform sorting/paging/filtering 

operations?  
■ What protected methods are specific to adminhtml grids, and how are 

they used? 
■ What is the standard column class in a grid, and what is its role? 
■ What are column renderers used for in Magento? 
■ How can JavaScript used for a Magento grid be customized? 
■ What is the role of the grid container class and its template? 
■ What is the programmatic structure of mass actions? 
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These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Adminhtml_Block_Widget_Grid 
■ Mage_Adminhtml_Block_Widget_Grid_Column 
■ Mage_Adminhtml_Block_Widget_Grid_Column_Renderer/

* 
■ Mage_Adminhtml_Block_Widget_Grid_Column_Filter/* 
■ Mage_Adminhtml_Block_Widget_Grid_Container 
■ app/design/adminhtml/default/default/template/wid

get/grid.phtml 
■ app/design/adminhtml/default/default/template/wid

get/grid/container.phtml 

System configuration 

○ Define the basic terms, elements, and structure of system configuration XML: 

■ How can elements in system configuration be rendered with a custom 
template? 

■ How does the structure of system.xml relate to the rendered 
elements in the System Configuration view? 

■ How can the CSS class of system configuration elements be changed? 
■ What is the syntax for specifying the options in dropdowns and 

multiselects? 
■ Which classes are used to parse and render system configuration XML? 
■ What is the syntax to specify a custom renderer for a field in system 

configuration? 
■ How does Magento store data for system configuration? 
■ What is the difference between Mage::getStoreConfig(...) 

and Mage::getConfig()->getNode(...)? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage/Adminhtml/Model/System/Config/* 
■ Mage/Adminhtml/Block/System/Config/* 

○ Describe system configuration scopes: 

■ How do different scopes (global, website, store) work in Magento 
system configuration? 

■ How does Magento store information about option values and their 
scopes? 
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These code references can be used as an entry point to find answers to the questions 
above: 

■ core_config_data table 
■ Mage_Core_Model_Core_Config_Data 
■ Mage_Core_Model_Resource_Config_Data 
■ Mage_Core_Model_Resource_Config_Data_Collection 

Access Control Lists (ACL) and permissions in Magento  

○ Define/identify basic terms and elements of ACL 

○ Use ACL to: 

– Set up a menu item 

– Create appropriate permissions for users 

– Check for permissions in permissions management tree structures 

To verify your understanding, ask yourself these questions: 

■ For what purpose is the _isAllowed() method used and which class 
types implement it? 

■ What is the XML syntax for adding new menu element? 
■ What is adminhtml.xml used for? Which class parses it, and which 

class applies it? 
■ Where is the code located that processes the ACL XML and where is the 

code that applies it? 
■ What is the relationship between Magento and Zend_Acl? 
■ How is ACL information stored in the database? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Admin_Model_Acl 
■ Mage_Admin_Model_Acl_Resource 
■ Mage_Admin_Model_Acl_Role 
■ Mage_Admin_Model_Resource_Acl 
■ Mage_Admin_Model_Resource_Role 
■ Mage_Admin_Model_Resource_Roles 
■ Mage_Admin_Model_Resource_Rules 
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Working with extensions in Magento 

○ Describe how to enable and configure extensions 

○ Define Magento extensions and describe the different types of extension available 
(Community, Core, Commercial) 

Questions to ask yourself: 

■ In which folders are Magento extensions files located? 
■ Which files are necessary to make custom modules work? 
■ How can module dependencies be manipulated? 
■ What is the role of the downloader? 
■ How can modules be installed through Magento Connect? 
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7- Catalog 

This topic comprises approximately 8% of the exam. Items are drawn randomly from the 
following topics and objectives: 

Product Types 

○ Identify and describe standard product types (simple, configurable, bundled, etc.) 

○ Create custom product types from scratch or modify existing product types 

○ Identify how custom product types interact with indexing, SQL, and underlying data 
structures. 

In addition to allowing customization of existing product types, the framework 
provided by the Magento catalog module lets you create completely new ones. 

■ Which product types exist in Magento? 
■ Which product types are implemented as part of the Mage_Catalog 

module, and which are not? 
■ What steps need to be taken in order to implement a custom product 

type? 
■ How do the different product types handle calculation? 
■ Which indexing processes does the product type influence? 
■ Which product types implement a parent-child relationship between 

product entities? 
■ Which database tables are shared between product types, and which 

ones are specific to one product type? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Catalog_Model_Product_Type 
■ Mage_Catalog_Model_Product_Type_Abstract 
■ Mage_Catalog_Model_Product_Type_Simple 
■ Mage_Catalog_Model_Resource_Product_Type_Configur

able 
■ Mage_Bundle_Model_Product_Type 
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Price Generation 

○ Identify basic concepts of price generation in Magento 

○ Modify and adjust price generation for products (for example, during integration of 
third-party software): 

■ Under what circumstances are product prices read from the index 
tables? 

■ From which modules do classes participate in price calculation? 
■ Which ways exist to specify custom prices during runtime? 
■ How do custom product options influence price calculation? 
■ How are product tier prices implemented and displayed? 
■ What is the priority of the different prices that can be specified for 

products (price, special price, group price, tier price, etc.)?  

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Catalog_Model_Product::getPrice() and 
getFinalPrice() 

■ Mage_Catalog_Model_Product_Type_Price 
::getTierPrice() 

■ Mage_Catalog_Model_Product_Indexer_Price 
■ Mage_Catalog_Model_Product_Type_Configurable_Pric

e 

Category Structure 

○ Describe the Category Hierarchy Tree Structure implementation (the internal 
structure inside the database), including: 

– The meaning of parent_id 0 

– The construction of paths 

– The attributes required to display a new category in the store 

Questions to ask yourself: 

■ How is the category hierarchy reflected in the database? Does it differ 
when multiple root categories are present? 
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■ How is a catalog tree read from the database tables, with and without 
flat catalog tables enabled?  

■ How does working with categories differ if the flat catalog is enabled on 
a model level? 

■ How is the category parent id path set on new categories? 
■ Which methods exist to read category children and how do they differ? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Catalog_Model_Category 
■ Mage_Catalog_Model_Resource_Category 
■ Mage_Catalog_Model_Resource_Category_Collection 
■ Mage_Catalog_Model_Resource_Category_Tree 

Catalog Price Rules 

○ Identify how catalog price rules are implemented in Magento: 

■ How are the catalog price rules related to the product prices? 
■ How are the catalog price rules stored in the database? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_CatalogRule_Model_Rule 
■ Mage_CatalogRule_Model_Observer 
■ Mage_CatalogRule_Model_Rule_Product_Price 

Other Skills 

○ Choose optimal catalog structure (EAV vs. Flat) for a given implementation 

○ Implement, troubleshoot, and modify Magento tax rules 

○ Modify, extend, and troubleshoot the Magento layered (“filter”) navigation 

○ Troubleshoot and customize Magento indexes 

○ Describe custom product options in Magento 

The Magento catalog module doesn’t only consist of categories and products: a lot 
of additional catalog functionality is implemented, partly within the 
Mage_Catalog module, partly in other modules. 
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■ When and how are the catalog flat tables updated when a product is 
modified? 

■ Which factors are used by the Mage_Tax module to apply the correct 
tax rate (or rates) to a product price? 

■ How can attributes with custom source models be integrated into 
layered navigation filtering? 

■ Which classes are responsible for rendering the layered navigation? 
■ Which indexes are used for the layered navigation? 
■ Which steps are needed to integrate a custom indexer into the 

framework offered by the Mage_Index module? 
■ How are custom product options stored on quote and order items? 
■ How can you specify custom product options on-the-fly on quote items? 
■ How are custom product options copied from quote to order items? 
■ How are custom product options processed when a product is added to 

the cart? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Catalog_Model_Product_Indexer_Flat 
■ Mage_Catalog_Model_Category_Indexer_Flat 
■ Mage_Catalog_Model_Product_Indexer_Eav 
■ Mage_Catalog_Model_Resource_Product_Indexer_Eav 
■ Mage_Tax_Helper_Data:: getPrice() 
■ Mage_Catalog_Block_Layer_State 
■ Mage_Catalog_Block_Layer_View 
■ Mage_Catalog_Model_Layer 
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8- Checkout 

This topic comprises approximately 13% of the exam. Items are drawn randomly from the 
following topics and objectives: 

Checkout components 

○ Describe how to modify and effectively customize the quote object, the quote item 
object, and the address object: 

■ What is the quote model used for in Magento? 
■ What is the shopping cart model used for in Magento? 
■ How does Magento store information about the shopping cart? 
■ How are different product types processed when added to the cart?  
■ What is the difference between shipping and billing address objects in 

Magento? How is each used in the quote object? 
■ What is the difference in processing quote items for onepage and 

multishipping checkout in Magento? 
■ How does Magento process additional information about products 

being added to the shopping cart (custom options, components of 
configurable products, etc.)? 

■ How do products in the shopping cart affect the checkout process? 
■ How can the billing and shipping addresses affect the checkout process? 
■ When exactly does inventory decrementing occur?  
■ When exactly does card authorization and capturing occur? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Sales_Model_Quote 
■ Mage_Sales_Model_Quote_Address 
■ Mage_Sales_Model_Quote_Item 
■ Mage_Sales_Model_Quote_Address_Item 
■ Mage/CatalogInventory/etc/config.xml 
■ Mage_CatalogInventory_Model_Observer 

○ Explain the database schema for total models: 

■ What are total models responsible for in Magento? 
■ How you can customize total models? 
■ How can the individual total models be identified for a given checkout 

process? 
■ How can the priority of total model execution be customized? 
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■ To which objects do total models have access in Magento, and which 
objects do they usually manipulate? 

■ Which class runs total models processing? 
■ What is the flow of total model execution? 
■ At which moment(s) are total models executed  

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage/Sales/etc/config.xml 
■ Mage/Tax/etc/config.xml 
■ Mage_Sales_Model_Quote_Address 
■ Mage_Sales_Model_Quote_Address_Item 
■ Mage_Sales_Model_Quote_Address_Total_Abstract 
■ Mage_Sales_Model_Quote_Address_Total_Collector 
■ Mage/Sales/Model/Quote/Address/Total/* 
■ Mage/SalesRule/etc/config.xml 
■ Mage_SalesRule_Model_Validator 

Shopping Cart price rules 

○ Describe how shopping cart price rules work and how they can be customized: 

■ Which module is responsible for shopping cart price rules? 
■ What is the difference between shopping cart and catalog price rules? 
■ What are the limitations of Magento shopping cart rules? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage/SalesRule/etc/config.xml 
■ Mage/SalesRule/Model/* 

Shipping and payment methods in Magento 

○ Describe the programmatic structure of shipping methods, how to customize 
existing methods, and how to implement new methods 

○ Describe the shipping rates calculation process: 

■ How does Magento calculate shipping rates? 
■ What is the hierarchy of shipping information in Magento? 
■ How does the TableRate shipping method work? 
■ How do US shipping methods (FedEX, UPS, USPS) work? 



Magento® Certified Developer Plus Exam Study Guide page 34 

© 2013 X.commerce, Inc. version 2.2 January 2013 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Shipping_Model_Carrier_Abstract 
■ Mage_Shipping_Model_Rate_Abstract 
■ Mage_Shipping_Model_Rate_Request 
■ Mage_Shipping_Model_Rate_Result 
■ Mage/Shipping/Model/Rate/Result/* 
■ Mage_Shipping_Model_Info 
■ Mage/Shipping/Model/Carrier/* 
■ Mage/Shipping/Model/Resource/Carrier/* 

○ Describe the programmatic structure of payment methods and how to implement 
new methods: 

■ How can payment method behavior be customized (for example: 
whether to charge or authorize a credit card; controlling URL redirects; 
etc.)? 

■ Which class is the basic class in the payment method hierarchy? 
■ How can the stored data of payment methods be customized (credit 

card numbers, for example)? 
■ What is the difference between payment method and payment classes 

(such as order_payment, quote_payment, etc.)? 
■ What is the typical structure of the payment method module? 
■ How do payment modules support billing agreements? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Payment_Model_Method_Abstract 
■ Mage_Payment_Model_Method_Cc 
■ Mage_Payment_Model_Info 
■ Mage/Paypal/* 
■ Mage/PaypalUk/* 

Magento multishipping implementation 

○ Describe how to extend the Magento multishipping implementation 

○ Identify limitations of the multishipping implementation: 

■ How does the storage of quotes for multishipping and onepage 
checkouts differ? 

■ Which quotes in a multishipping checkout flow will be virtual? 
■ What is the difference in the multishipping processing for a quote with 

virtual products in it? 
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■ How can different product types be split among multiple addresses 
when using multishipping in Magento? 

■ How many times are total models executed on a multishipping checkout 
in Magento? 

■ Which model is responsible for multishipping checkout in Magento? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Checkout_Model_Type_Multishipping 
■ Mage_Sales_Model_Quote_Address 
■ Mage_Sales_Model_Quote 
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9- Sales and Customers 

This topic comprises approximately 9% of the exam. Items are drawn randomly from the 
following topics and objectives: 

Sales 

○ Describe order creation in the admin 

○ Describe the differences in order creation between the frontend and the admin: 

■ Which classes are involved in order creation in the admin? What are 
their roles (especially the role of adminhtml classes)? 

■ How does Magento calculate price when an order is created from the 
admin? 

■ Which steps are necessary in order to create an order from the admin? 
■ What happens when existing orders are edited in the admin? 
■ What is the difference between order status and order state? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Sales_Model_Order 
■ Mage_Sales_Model_Order_Address 
■ Mage_Adminhtml_controllers_Order_CreateController 
■ Mage_Adminhtml_Model_Sales_Order_Create 

○ Card operations (capturing and authorization): 

■ Which classes and methods are responsible for credit card operations 
(for example authorization or capturing)? 

■ What is the difference between “pay” and “capture” operations? 
■ What are the roles of the order, order_payment, invoice, and 

payment methods in the process of charging a card? 
■ What are the roles of the total models in the context of the invoice 

object? 
■ How does Magento store information about invoices? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Sales_Model_Order_Invoice 
■ Mage/Sales/Model/Order/Invoice/* 
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■ Mage_Sales_Model_Order_Payment 
■ Mage_Payment_Model_Method_Info 
■ Mage_Payment_Model_Method_Abstract 

○ Describe the order shipment structure and process: 

■ How shipment templates be customized? 
■ How can different items from a single order be shipped to multiple 

addresses? Is it possible at all? 
■ How does Magento store shipping and tracking information? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Sales_Model_Order_Shipment 
■ Mage/Sales/Model/Order/Shipment/* 

○ Describe the architecture and processing of refunds: 

■ Which classes are involved, and which tables are used to store refund 
information? 

■ How does Magento process taxes when refunding an order? 
■ How does Magento process shipping fees when refunding an order? 
■ What is the difference between online and offline refunding? 
■ What is the role of the credit memo total models in Magento?  

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Sales_Model_Order_Creditmemo 
■ Mage/Sales/Model/Order/Creditmemo/* 

○ Describe the implementation of the three partial order operations (partial invoice, 
partial shipping, and partial refund): 

■ How do partial order operations affect order state? 
■ How is data for partial operations stored?  

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Sales_Model_Order_Invoice 
■ Mage_Sales_Model_Order_Payment 
■ Mage_Sales_Model_Order_Shipment 
■ Mage_Sales_Model_Order_Creditmemo 
■ Mage_Payment_Model_Method_Abstract 
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○ Describe cancel operations: 

■ What cancel operations are available for the various order entities in 
Magento (order, order item, shipment, invoice, credit memo)? Do all of 
them support cancellation? 

■ How are taxes processed during cancel operations? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Adminhtml_Sales_OrderController 
■ Mage_Sales_Model_Order_Invoice 
■ Mage_Sales_Model_Order_Payment 
■ Mage_Sales_Model_Order_Shipment 
■ Mage_Sales_Model_Order_Creditmemo 

Customer 

○ Describe the architecture of the customer module 

○ Describe the role of customer addresses 

○ Describe how to add, modify, and display customer attributes: 

■ What is the structure of tables in which customer information is stored? 
■ What is the customer resource model? 
■ How is customer information validated? 
■ How can customer-related email templates be manipulated? 
■ What is the difference between shipping and billing addresses for a 

customer?  
■ How does the number of shipping and billing address entities affect the 

frontend interface for customers? 
■ How does customer information affect prices and taxes? 
■ How can attributes be added to a customer address? How are custom 

address attributes you converted to an order address? 
■ Can a customer be added to two customer groups at the same time? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage/Customer/etc/config.xml 
■ Mage_Customer_Model_Customer 
■ Mage_Customer_Model_Resource_Customer 
■ Mage_Customer_Model_Customer_Address 
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10- Advanced features 

This topic comprises approximately 11% of the exam. Items are drawn randomly from the 
following topics and objectives: 

Widgets 

○ Create frontend widgets and describe widget architecture: 

■ What classes are typically involved in Magento widget architecture? 
■ How are admin-configurable parameters and their options specified? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Widget_Model_Widget 

API 

○ Use the Magento API to implement third party integrations 

○ Extend the existing Magento API to allow for deeper integrations into third party 
products 

○ Describe the different Web Service APIs available within the Magento Core 

○ Describe the advantages and disadvantages of the available Web Service APIs in 
Magento 

○ Identify the configuration files used for the v2 SOAP API 

○ Describe the purpose of the configuration files related to the API 

Ask yourself these questions: 

■ What are the syntactical differences between API versions? 
■ How is the final WSDL composed? How can it be customized? 
■ How are existing methods overwritten? How can additional methods be 

added? 
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These code references can be used as an entry point to find answers to the questions 
above: 

■ Mage_Api_Model_Wsdl_Config 
■ Mage_Api_Model_Server 

Other Skills 

○ Integrate Google features (Google Wallet, Checkout, AdWords, Analytics) into 
Magento implementation 
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11- Enterprise Edition 

This topic comprises approximately 9% of the exam. Questions are drawn randomly from the 
following objectives: 

○ Describe how to customize, extend, and troubleshoot Enterprise Edition catalog 
target rules: 

■ What additional possibilities does the Enterprise target rule module 
provide over the Mage_CatalogRule? 

■ How does the module store the rules in the database? 
■ Which indexer processes the rules, and how is the index used to realize 

faster reads? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Enterprise_TargetRule_Model_Rule 
■ Enterprise_TargetRule_Model_Resource_Index 
■ Enterprise_TargetRule_Model_Observer 

○ Describe how to customize, extend, and troubleshoot the Enterprise Edition reward 
point system: 

■ How do the features offered by the reward point system hook into 
other Magento modules? 

■ Under which conditions may reward points be assigned? 
■ Which steps are required to add new custom options to assign reward 

points? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Enterprise_Reward_Model_Observer 
■ Enterprise_Reward_Model_Reward_Rate::calculateToC

urrency() and calculateToPoints() 
■ Enterprise_Reward_Helper_Data 

::getRateFromRatesArray() 

○ Describe how to implement, customize, and troubleshoot Enterprise Edition website 
restrictions: 

■ How does the website restrictions module determine which pages are 
accessible without authentication? 
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■ How does the module prevent visitors from accessing restricted website 
content? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Enterprise_WebsiteRestriction_Model_Observer 
■ Enterprise_WebsiteRestriction_Block_Cms_Stub 

○ Identify the elements and functioning of Enterprise Edition Full Page Cache: 

■ How does the full page cache module hook into the request flow and 
serve page requests from the cache? 

■ What is the difference between the applyWithoutApp() and 
applyInApp() methods of the abstract? 

■ What is the role of each node in the cache.xml configuration file? 
■ Which steps are necessary to implement a dynamically rendered block 

inside an otherwise fully cached page? 

These code references can be used as an entry point to find answers to the questions 
above: 

■ Enterprise_PageCache_Model_Observer 
■ Enterprise_PageCache_Model_Container_Abstract 
■ Enterprise_PageCache_Model_Processor_Default 

○ Describe the Payment Bridge: 

■ How is the Payment Bridge implemented and configured? 

This code reference can be used as an entry point to find answers to the question 
above: 

■ Enterprise/Pbridge/* 
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12- Challenge Questions 

Approximately 8% of the Magento Certified Developer Plus exam consists of Challenge 
questions, randomly drawn from the objectives covered in the individual sections of this Study 
Guide. The Challenge questions go into more detail or cover more complex areas of the topic 
than the questions in the other sections of the Magento Certified Developer Plus exam. 
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Sample Questions 
These questions are representative of the types of question on the exam. Answers are given on the page 
following the last question. 

 

1- In which of the following methods would you log event names?  

A.  Mage::addObserver()  

B.  Varien_Event::dispatchEvent()  

C.  Mage::logEvent() 

D Mage_Core_Model_App::dispatchEvent() 

 

 

2- In which order are translations loaded? 

 

1- Module translation files under app/locale/[locale]/*.xml  

2- Translations stored in the DB table core_translate  

3- Theme translations in the translate.csv file located in the theme 
locale/[locale]/ directory 

 

A. 1, 2, 3  

B. 1 ,3, 2  

C. 2, 1, 3  

D. 2, 3, 1 

 

 

3 - When specifying a custom connection resource for a module that handles the DB reads, which of the 
following is a possible resource name?  

A. <modulename_readonly>  

B. <modulename_read> 
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C. <modulename_default>  

D. <modulename_setup>  

E. <modulename_connection_read> 

 

 

4 - Assuming a setup class of Mage_Sales_Model_Resource_Setup, which of the following will 
correctly add an attribute to the sales/order entity?  

A. $installer->addAttribute('sales_order_entity', 'foo', array 
('type'=> 'int'));  

B. $installer->addAttribute('sales/order', 'foo', array('type' 
=>'int'));  

C. $installer->addAttribute('order', 'foo', array('type' => 'int'));  

D. $installer->addAttribute('sales_flat_order', 'foo', array('type' 
=>'int')); 
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Answers to Sample Questions 
 

1-D 

2-B 

3-B  

4-C 
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